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LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS 

by 

Harvey M.   Wagner 

Stanford University 

1.     Introduction 

Karst   [5]  has   recently suggested an  iterative procedure   "for  finding 

a straight  line of best  fit to  a set of two dimensional points   such  that, 

the  sum of  the absolute values  of the vertical deviations  of   the  points 

from the  line is  a minimum."     It  is  well   known  that  the  general     p  +  1 

dimensional version of  this problem may be exactly formulated  as   a linear 

programming model   consisting  of n equations,   where  n  is   the  number of 

observations.    By employing the  fundamental dual  theorem   [1,   6,   8]   in   linear 

programming,  we  shall  show how  the problem can be   solved by  a p  equation 

linear programming model with bounded variables   [2,   3^   91-     Secondly we 

shall  demonstrate  how a  regular    p  +  1  equation   linear programming model 

can be utilized to  find a line  of best  fit  according to  a Chebyshev  criterion 

[k],   i.e.,   a line   (or hyperplane)   which minimizes   the  maximum  of  the  vertical 

deviations   from the   sample points. 

2.     Minimizing   the  Sum of Absolute Deviations 

Let  X  denote  an     n  x p     dimensional  matrix,   where  the   columns   consist, 

of n observational  measurements  on p  "Independent"  variables,   and  Y denote 

an n-dlmensional  column vector of measurements  on  the   "dependent"   variable. 
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We wish to find a p-dlmenslonsl column vector b such that 

Xb + ^ - Ie2 = Y , ^2.^2 -  0 

minimize E = (1 1 ... 1) 

l^/ 

where I is an n x n identity matrix.  We interpret e,  and e  as 

n-dimensional coliimn vectors of vertical deviations "below" and "above" 

the fitted line; i.e., (e.. + ep) is the vector of absolute deviations 

between the fit  Xb and Y (by the nature of the model, it is clear that 

the J-th components of e  and e   cannot both be strictly positive 

in an optimal solution).  The solution to our problem yields the 

regression equation 

(x1 x2 o xb = y. (2) 

Note that if we wish the left hand side of (2) to include a 

coefficient for the Intercept of the y axis to be determined by the linear 

fit, then we can let x    = 1   ,   and the p-th column of X be a vector of 

one's  We may force the fitted line to pass through some point, the usual 

example being the set of sample means, either by adding to (1) the linear 

restriction 

(», x2 ... xp) b = y (3) 
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or by the usual least squares approach of subtracting each coordinate of 

the point, in our example the sample mean for each variable, from all the 

corresponding observations (including y) and then by fitting (1) without 

a y-intercept coefficient; the latter approach simply consists of shifting 

the origin of the axes in a p-dimensional space to the selected point, and 

then of fitting the line (hyperplane) through the new origin. 

If it is desirable, the linear programming model (1) can be restricted 

further to permit only non-negative values for some or all of the components 

of b, and to force b to satisfy additional linear constraints.  It is 

noteworthy that collinearity In X (even to the degree that two columns of 

X are Identical) will not cause a failure in the algorithm for (1).  One 

drawback of the model is evident:  when the number of observations n is 

sizeable, (1) becomes computationally unwieldy,. 

We shall now transform (1) into a more manageable dual problem which 

will yield the optimal b as a byproduct.  To start, we shall assume we 

have added to (1) the restriction b > 0.  The fundamental dual relationship 

in linear programming [1, 6, 8] asserts a solution to (1) can be found by 

considering the linear programming model 

X'd < {ka) 

Id < (Kb) 



-Id < 

l\ 
1 (4c) 

maximize G = Y'd  , (U) 

where X' is the transpose of X, Y* the transpose of Y, and d an 

n-dimenslonal column vector of "dual variables" which are unrestricted 

in sign (because (1) consists of a set of equations). Model (4), as It 

appears, is even a larger problem than (1), since it consists of p + 2n 

relations.  To reduce the problem to a model in p equations and n bounded 

variables we let 

(f)- 

Then   (k)   is   equivalent  to 

(d) (5) 

X'f   < X' 

1 
1 (6a) 

0<f<2 J=l,2,   ...,n (6b) 

max    G    -   Y'f-Y' 
1 

(6c) 



Upon appending a set of slack variables to (6a) and dropping the constant 

on the right side of (6c), we may solve (6) by one of the simplex 

algorithms for bounded variables [2, 3, 9]-  If X and Y are deviations 

of sample values from their means, then the right hand side of (6a) Is 

a vector of zero's, and the constant In (6c) Is zero.  Denoting the basis 

of the optimal solution of (6) by B (which may include slack vectors). 

and the associated coefficients In (6c) by  r' , we have 
B 

b  =   (B-1)'^      . (7) 

No  extra computations  are needed  to  find  (7)-     In  the original   simplex 

method b appears   in the     (z  -c.)   row of the   final  simplex tableau under 
J J 

the columns for the slack vectors [1, 8]; in the revised simplex method 

(7) Is the "shadow price" vector for the optimal solution [7]■  The 

optimal value of G is the minimized sum of absolute deviations. 

When we drop our assumption that b be non-negative and allow the 

components of b to take on any sign, we modify (6) to 

X'f = X1 (6a:) 

and Introduce a set of artificial variables having an arbitrarily high 

cost to initiate one of the simplex algorithms.  The optimal b remains 

(7)> i.e., the shadow price vector in the revised simplex method or z 

of the final simplex tableau under the columns for the artificial vectors 

[1]. 

i 
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In summary, we can solve for b In (1) by applying a simplex 

algorithm for bounded variables to the p equation model (6).  Although 

the mathematical manipulation underlying the transformation of problems 

appears involved, the computational procedure required to solve (6) is 

relatively straightforward, but somewhat laborious. 

3. Minimizing the Maximum Absolute Deviation 

The most bothersome aspect of the approach in the previous section 

is the requirement of a linear programming algorithm for bounded variables, 

as such techniques are (slightly) more difficult to perform than the 

standard simplex algorithm.  We may eliminate the drawback if we are 

willing to accept a Chebyshev criterion for best fit. Our model in this 

case is to find a p dimensional column vector b such that 

Xb - Y < 

/l' 
1 

(8a) 

-Xb + Y < 

minimize  e > 0 

(8b) 

(8c) 

Examination of (8) will reveal that  e  is the maximum absolute deviation. 

The equations (8) are reminiscent of a linear programming formulation for 

the mlnlmax problem in two-person zero-sum games, and we shall use a 

similar approach for the solution. An equivalent expression for (8) is 
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(9) 

minimize e > 0 , 

—» 
where 1 is an n-dimensional column vector of one's.  Our previous 

remarks concerning additional linear constraints on "b    apply here equally 

as well. 

Assuming for the moment that we wish to impose the restriction b > 0 , 

we convert the 2n equation model (9) into its dual form, which contains only 

p + 1  equations 

(-X*     X') 
Ih. 

(0) (10a) 

( 1' 1') (10b) 

*!»    h2 > 0 > 

maximize M = (-Y* r) (10c) 

where 0 is a p-dimensional column vector of zero's. The vectors h.  and 

h  are n-dimensional columns;  if a component of h. (h )  Is positive in the 

optimal solution of (10), then the maximum deviation occurs at the correspondirtg 

point or equation in (8), and this point will lie "below" ("above") the fitted 

line. Analogous to our result In (7) , 



= (B"1)^. (11) 

where B denotes the optimal basis for (10), and r '  the coefficients B 
In  (10c)   corresponding  to  the variables  In Bj  and exactly as before,   the 

solution  (11)   Is a byproduct of   the simplex method. 

If we  drop the assumption  that b be non-negative,  we need only 

change   (10a)   to equalities,  and  results analogous   to  those  in the previous 

section continue to hold. 

k .    A Numerical Example 

Karst   [5]   examines  the following data 

X1 =  [-12.5    -8.5    -6.5    -3-5    -2.5    -1.5    -0.5    2.5    U.5    8.5    8.5    11.5] 

(12) 

Y'  =   [- d.k    -5.1+      3.6    -2.U    -k.h      1,6     -0.J+ -O.k -2.4     3.6    5.6      9.6], 

which  comprise deviations  of the  original  data about  their  sample mean? . 

He  finds  the  least squares  fit  to be 

Y =   -539 x     , (13) 

and  the  fit  for the minimized  sum of absolute deviations   to be 

y =   .659 x (U) 

As we have argued, (1^) can be obtained by (6), where specifically we 

would find 

b = (B'1)'^ = (1/8.5) 5-6 = .659  ■ (7') 
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The solution by model (10) yields 

-6.5   11-5 

1     1 
B 

and consequently 

,    V = [3.6 

.333 

5.767 

9.6] (15) 

(ll1) 

That Is, the Chebyshev fit Is 

y = .333 x  ; (16) 

since the vectors In B correspond to variables In h- , the third and 

last saatple point In (12) will lie above the fitted line and assume the 

maximum vertical deviation from It of 5'767. 
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